
Minimal neighborhood redundancy maximal relevance: Application
to the diagnosis of Alzheimer's disease

Pedro M. Morgado a,b, Margarida Silveira a,b,n, for the Alzheimer's Disease Neuroimaging
Initiative1

a Instituto Superior Tecnico, Technical University of Lisbon, Torre Norte, Piso 7, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
b Institute for Systems and Robotics, Lisbon, Portugal

a r t i c l e i n f o

Article history:
Received 23 September 2014
Received in revised form
12 December 2014
Accepted 22 December 2014
Communicated by Pingkun Yan
Available online 6 January 2015

Keywords:
Incremental Feature Selection
Minimal Neighborhood Redundancy
Maximal Relevance
Alzheimer's disease
Mild Cognitive Impairment
FDG-PET
MRI

a b s t r a c t

Existing feature selection methods are able to choose discriminative features with low redundancy but
are computationally too expensive for neuroimaging applications. This occurs because they analyze
every brain voxel while trying to reduce the redundancy between the selected features. We propose a
significantly faster method that focuses on the main source of redundancy which is neighboring voxels
and compare this new approach with four other well-known feature selection methods, evaluating them
extensively on three datasets. We start by using an artificial dataset to study the robustness of our
approach to noisy features, erroneous labels and small number of samples, which are problems that are
often encountered when building a CAD system that takes brain images as its input. Then, we analyze
the computational complexity of our method and study its usefulness for the diagnosis of Alzheimer's
disease and Mild Cognitive Impairment using FDG-PET images and tissue probability maps of Gray-
Matter extracted from MR images. Experimental results on synthetic and real data clearly validate our
approach as a very efficient algorithm for the selection of non-redundant features applicable to a variety
of neuroimaging techniques. In fact, the major computational gains come at no cost in either
performance or robustness.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Alzheimer's disease (AD) is the leading cause of dementia. Its
incidence rate grows exponentially with age, affecting mainly
people over 65 years old and achieving alarming rates of 40% for
people older than 85 [1,2]. Even though it is a progressive disease,
affecting memory and other cognitive and physical abilities, and
for which no treatment can currently cure or stop its progress,
some pharmaceuticals can slow down the advance of symptoms,
especially if the disease is detected in its early stages [3]. Hence,
the early diagnosis of AD, while still at the stage known as Mild
Cognitive Impairment (MCI), is essential to improve patients’ life

quality and extend life expectancy [2,3]. However, the early
diagnosis is a difficult task because there is no completely reliable
test for its diagnosis [2], and the physician must rely on the
cognitive and behavioral history of the patient and on cognitive,
physical and neurological tests. Neuroimaging techniques such as
Positron Emission Tomography (PET) using Fluorodeoxyglucose
(FDG) as the tracer or structural Magnetic Resonance Images (MRI)
can also be used, when available, to increase the confidence of the
diagnosis [4,5].

FDG-PET imaging techniques, on the one hand, measure at each
voxel the local consumption rate of glucose. Thus, since Alzhei-
mer's disease is characterized by a reduction of brain activity in
specific regions, this type of neuroimage can unveil important
information about the disease. On the other hand, structural MR
images have nowadays enough contrast and resolution to identify,
delineate and measure the volumes of the three main types of
brain tissue: Gray Matter (GM), White Matter (WM) and Cere-
brospinal Fluid (CSF). Thus, this type of neuroimage can also play a
major role in diagnosis because it reveals the patterns of tissue
degeneration that are characteristic of Alzheimer's disease.

In fact, in the last decade, the development of computer-aided
diagnostic (CAD) systems focusing mainly on the information
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provided by these neuroimaging techniques has attracted much
attention [6–11]. In addition to making the diagnosis less depen-
dent on the physician's expertise, the use of automated tools
allows a more sensitive analysis of AD-related changes, which can
lead to earlier detections and more accurate predictions. However,
one of the main difficulties that arise in such CAD systems is the
high-dimensionality of the 3D brain images in comparison with
the small number of samples that are typically available. It has
long been known that this setting leads to the degradation of the
generalization ability of many classifiers, a phenomenon known as
the curse of dimensionality [12]. To prevent this issue, the
diagnosis of AD should be done using classifiers that are more
robust to the small sample size problem, such as the Support
Vector Machine (SVM), and dimensionality reduction techniques
should be explored so that the initial number of features is
reduced.

In the context of neuroimaging based diagnosis, a variety of
methods have already been proposed to reduce the dimensionality
of the problem. Common examples include: aggregation techni-
ques where the brain is first parcelated into Regions of Interest
(ROIs) and then simple features are extracted from them; feature
extraction techniques based on linear projections such as Principal
Component Analysis (PCA) or Linear Discriminative Analysis
(LDA); and feature selection algorithms where the most statisti-
cally discriminative features are searched so that the irrelevant
ones can be ignored. All these techniques help to alleviate the
small sample size problems intrinsic to the high dimensionality of
PET and MR images and allow a faster training of the learning
machine. In this work we will focus on the latter.

Feature selection procedures used with voxel based neuroima-
ging applications are typically univariate methods that search for
the most discriminative features. However, the main disadvantage
associated with these methods is the fact that they cannot avoid
redundant features. As a consequence, a large number of voxels
selected by univariate approaches typically form clusters around a
small number of highly discriminative regions in the neuroimage,
where a small number of voxels would suffice to extract the same
information. Multivariate procedures, on the other hand, can
search for discriminative and non-redundant sets of features, but
since this is typically done incrementally, such methods are
computationally unappealing because the initial number of fea-
tures in this problem is extremely high.

In this work, we propose a multivariate procedure capable of
selecting non-redundant subsets of features significantly faster
than other similar methods. Our approach is inspired in the
Minimal Redundancy Maximal Relevance (mRMR) algorithm pro-
posed by Peng et al. [13], and uses a metric that accounts both for
the relevance of the voxels and the redundancy with the ones
already selected. We limit however the examination of the
redundancy to only neighboring voxels, since they account for
the majority of voxel interactions. The performance of the pro-
posed algorithm is compared with four other well-known selec-
tion approaches in terms of generalization and time-requirements
when applied to the diagnosis of AD and MCI. Comparisons are
conducted on a synthetic and two real datasets which are
composed by FDG-PET images and Gray-Matter tissue probability
maps obtained from MR images. We show that by avoiding the
redundancy between voxels, we prevent the algorithm from
concentrating the selected features on a single (even though
highly discriminative) region of the brain, i.e. we encourage the
selection of voxels not only from highly affected regions, but also
from areas that were only moderately impaired. In addition, our
approach is able to accomplish this goal very efficiently, in contrast
with the original mRMR algorithm. We also study the robustness
of the different selection techniques to noisy features, noisy class
labels and small sample sizes. The experiments conducted suggest

that no selection technique was completely robust to noise (both
in the feature values and the class labels), but our approach was
always amongst the algorithms with best results. These experi-
ments complement the preliminary tests published in [14], where
only the classification performance of our algorithm was evalu-
ated, using only one dataset of FDG-PET images.

The structure of the remaining of this paper is the following. In
Section 2, we review the feature selection literature as well as state-
of-the-art methods for the diagnosis of Alzheimer's disease and
related disorders, giving special attention to their dimensionality
reduction components. Then, in Sections 3.1, 3.2 and 3.3, all feature
selection algorithms studied in this work are described, and a brief
explanation of Support Vector Machines is given in Section 3.4. Next,
the acquisition and preprocessing of the MRI and PET database is
presented in Section 4. Experimental results are listed and discussed
in Section 5 and the main conclusions are summarized in Section 6.

2. State-of-the-art

Feature selection algorithms can be broadly classified into three
groups: wrapper methods that depend on the performance of a
classifier; embedded methods where feature selection is an integral
part of the learning machine; and filter methods which base their
decision only on the statistics of the data and are independent of
any classifier [15].

Wrapper methods measure the utility of subsets of features
using estimates of the generalization ability of one specific
classifier. Thus, they are potentially more discriminative, but have
the disadvantage of being computationally heavier than other
methods. Two good examples of this approach are the works of
Kohavi et al. [16] and Inza et al. [17] which showed that wrapper
methods can achieve significant improvements in performance
when compared to filters. Wrapper methods can also be found in
the context of AD diagnosis. For example, Chyzhyk et al. [18]
proposed a CAD system where the combinatorial space of all
possible subsets of features was searched using a genetic algo-
rithm. Note that, similar to the method proposed in this work, a
wrapper approach can also be used to select sets of features
incrementally, making it optimal in terms of classification perfor-
mance under this incremental selection constrain. However, this is
only feasible when the initial set of features is very small,
becoming impractical even for moderate feature sizes.

Embedded methods are computationally more efficient since
the selection of features is done at the training stage, by exploiting
the structure of the classifier. However, one disadvantage is that
embedded methods, similar to wrappers, tend to obtain subsets of
features that are sensitive to the learning algorithm. Examples of
embedded approaches include common decision trees algorithms
such as CART [19], or other more evolved methods, such as the
SVM-based approach proposed by Weston et al. [20], which tries
to optimize a trade-off between goodness of fit and number of
variables. Similar to Weston's work, regression based approaches
can also be used for feature selection, for instance using elastic net
regression [21]. Applications to the diagnosis of Alzheimer's
disease include for instance the work of Casanova et al. [22],
where an elastic net regularization scheme was applied to a
logistic regression classifier, and used to distinguish between
Alzheimer's disease and healthy subjects on structural MRI data.
Note that such methods consider the interactions between vari-
ables and allow for the selection of uncorrelated features if a high
weight is set on the L1 term of the regularized loss function.
However, as mentioned earlier and contrary to the method
proposed in this work, the success of these methods depends
strongly on the choice of the classification/regression model.
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Filter methods, on the other hand, are typically faster than
wrappers and offer a more general alternative, i.e. independent of
any classifier. These approaches try to identify statistical depen-
dencies between features and the class using a variety of utility
measures. Battiti [23] proposed one of the first incremental
multivariate methods based on mutual information, where, in
each step, the relevance of each unselected feature is weighted
against its redundancy with the already selected ones. This
approach, which is known as Mutual Information based Feature
Selection (MIFS), is in fact very similar to the Minimal Redundancy
Maximal Relevance (mRMR) algorithm proposed by Peng et al. [13]
and which will be further discussed in Section 3.2.3. More recently,
different criteria have been proposed such as the conditional
mutual information [24] or the second order approximation of
the joint mutual information between all features and the class
label [25]. However, these multivariate approaches are in general
computationally too demanding to be used in very high dimen-
sional problems such as the diagnosis of AD based on neuroi-
mages. As a consequence, most studies in this field only explore
univariate methods based, for instance, on Mutual Information
[11], Pearson's correlation coefficient [26] or the Fisher discrimi-
nant ratio [27,28]. The disadvantage of univariate procedures is
mainly the fact that they are not able to avoid redundancy
between selected features. Hence, we propose an efficient multi-
variate algorithm that takes advantage of the inherent redundancy
between neighboring voxels to accelerate the computations.

Finally, it should be mentioned that successful techniques
typically take the characteristics of the problem into account,
and explore them using the methods discussed above. For exam-
ple, Fan et al. [6] proposed a method for the classification of tissue
density maps extracted from MR images. In this approach, the
input-space was first reduced using a watershed algorithm to
automatically delineate regions that show high discriminative
power, from which regional volumetric features were extracted.
Then, using SVM classifiers, an incremental wrapper approach was
used to further reduce the number of features. In a different work,
Segovia et al. [29] tested two dimensionality reduction techniques
on FDG-PET images. The first approach modeled the difference
between the averages of the images that belonged to each of the
two clinical states (healthy and AD) using Gaussian Mixture
Models and then, computed the final features by projecting the
individual images onto each Gaussian component. The second
approach was based on the Partial Least Squares (PLS) method that
assumes that the data is generated by a linear process driven by a
small number of latent vectors or components. Thus, after finding
these latent variables, the PLS scores (one for each component)
were extracted and used as features.

3. Methods

In this section, we provide a concise description of all the
methods used in this work. We start with 3 feature selection
algorithms that were used for comparison and then introduce the
proposed approach – minimal neighborhood redundancy maximal
relevance. Next, we provide a brief description of the SVM
algorithm, which was used for classification, and of the evaluation
criteria used to compare the different methods.

3.1. Feature selection

Formally, feature selection can be defined as follows. Suppose
we have a labeled dataset D composed of P samples with N
features, i.e. D¼ fðxðpÞ; yðpÞÞjp¼ 1;…; Pg where xðpÞ ¼ ðxðpÞ1 ;…; xðpÞN Þ is
the N-dimensional feature vector of the pth sample and yðpÞ is its
class label. The feature values xðpÞn and the class labels yðpÞ should

also be seen as realizations of the underlying random variables Xn

and Y, respectively. The goal of feature selection is, therefore, to
find the subset of K features that “optimally” describes the
class label.

Since the purpose of feature selection is to reduce the input
space without losing discriminative information, the ideal optim-
ality criterion would be the minimization of the Bayes error
associated with the subset of chosen variables. However, this
criterion cannot be used in practice for two reasons: first, since
all possible subsets would need to be evaluated, this criterion is
computationally infeasible, and second because the true prob-
ability distributions that describe the data are generally not known
and difficult to estimate for high-dimensional vectors. As a con-
sequence, alternative criteria need to be defined leading to
different feature selection algorithms. In this work, in addition to
a dummy technique that operates in a completely random fashion
(implemented just for comparison purposes), four other algo-
rithms were studied which are now described.

3.2. Previous methods

3.2.1. ReliefF
ReliefF, proposed by Kononenko [30], is an extension of the

Relief algorithm proposed by Kira and Randell [31]. This extension
was designed to deal with multiclass problems, to improve the
robustness to noise and to deal with incomplete data. The key idea
of both algorithms is to assess each feature based on how well its
values can distinguish samples that lie close to each other in the
feature space, i.e. both Relief and ReliefF favor features whose
values are closer between neighboring images of the same class
and farther apart between neighbors of different classes. However,
Relief only looks for the nearest image in both classes, while
ReliefF averages the influence of n images. The nearest vectors are
searched for using the standard l2-norm to measure the distance
between images in the high-dimensional image space.

In our experiments, we used ReliefF whose pseudo-code can be
seen in Algorithm 1. In this pseudo-code, the nearest hits (misses)
of XðpÞ are the set of images in the training set that are closest to
XðpÞ in the image space and that belong to the same (opposite)
class. Note also that a few straightforward (problem specific)
simplifications were made that resulted from the fact that all
features used for the AD and MCI diagnosis are numeric, the
number of training instances is small (and so there is no need to
randomly sample from it as originally proposed by Kononenko
[30]) and the algorithm will only be used for binary problems. The
interested reader is referred to [32] for a more thorough theore-
tical and empirical analysis of this family of algorithms.

ReliefF is conceptually different to the procedures that are now
presented. Also, even though it is a ranking algorithm, and thus
computationally attractive, it considers the interactions between
different features when looking for the closest hits and misses.
These were the reasons why we used ReliefF for comparison
purposes.

Algorithm 1. ReliefF.

1: Ji’0; i¼ 1;…;N
2: Ci’maxðXiÞ�minðXiÞ; i¼ 1;…;N
3: for p¼1 to P do
4: Hð1;…;nÞ’Set of n nearest hits of XðpÞ;
5: Mð1;…;nÞ’Set of n nearest misses of XðpÞ;
6: for i¼1 to N do
7:

Ji’Jiþ
Pn

j ¼ 1

jXðpÞ
i �MðjÞ

i j
P�n�Ci

� Pn

j ¼ 1

jXðpÞ
i �HðjÞ

i j
P�n�Cn

;

8: end for
9: end for
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3.2.2. Mutual information maximization
Some of the most widely used criteria for feature selection

purposes are based on mutual information (MI). Mutual informa-
tion IðW ; ZÞ is an information-theoretic measure between two
random variables W and Z that quantifies by how much the
uncertainty of one of them is reduced by knowing the other, or
in mathematical terms, IðW ; ZÞ ¼HðWÞ�HðW jZÞ, where Hð�Þ is the
entropy. Alternatively, the definition of MI can be compressed into
the following single equation:

IðW ; ZÞ ¼
X

wAW

X

zAZ
pðw; zÞ log pðw; zÞ

pðwÞpðzÞ; ð1Þ

where W and Z denote the dictionaries of the variables W and Z,
respectively.

The simplest approach to feature selection based on Mutual
Information, which from hereafter will be referred to as Mutual
Information Maximization (or MIM), only takes into account the
Mutual Information between each feature and the class labels and
can be described in three simple steps. First, the real-valued
features Xn are quantized into a predefined number of values b,
generating the corresponding discrete features X0

n. Then, the
relevance of each feature is measured using the mutual informa-
tion IðX0

n;YÞ between its discretized version and the class label and,
finally, the MI scores are sorted and the best K features selected.

In a final note, it should be mentioned that the estimation of
mutual information using frequency counts is biased due to the
concave shape of the logarithmic function as pointed out by
Paninski [33]. Despite this, we chose this approach due to its
simplicity and computational efficiency. Besides, we are not
interested in the estimates of the mutual information per se, but
in the ranking of the features instead.

3.2.3. Minimal redundancy maximal relevance
A disadvantage of MIM is that the redundancy is not penalized

and, thus, completely redundant features can be selected before
other non-redundant ones, i.e. features can be selected without
any improvement to the discriminative power of the whole subset.
This is especially important in the current application because we
are dealing with smoothed brain images where neighboring voxels
share redundant information by nature.

An alternative approach consists on selecting new features
incrementally, starting from an empty set, where, at each step,
only the feature that maximizes some utility measure is chosen.
The minimal redundancy maximal relevance (mRMR) criterion, as
proposed by Peng et al. [13], adopts this incremental approach
using the utility measure shown in Eq. (2) to compare, in each
iteration, all unselected features Xn. This criterion tries to choose
the most relevant features while minimizing the average redun-
dancy with the ones already selected.

JðXnÞ ¼ IðXn;YÞ�
1
jSj

X

mA S

IðXn;XmÞ ð2Þ

In the above equation, S represents the set of features pre-
viously selected and jSj its cardinality. For clarity purposes, the
algorithmic details of a generic incremental feature selection
technique can be consulted in Algorithm 2. In the case of mRMR,
the utility measure in line 5 should be computed using Eq. (2).

One disadvantage of mRMR is its computational requirements,
mainly due to the estimation of the redundancy terms IðXn;XmÞ.
For instance, in the second iteration, this term has to be estimated
N�1 times (between the feature selected at iteration 1 and the
N�1 unselected), in the second iteration, N�2 times, and so forth.
Thus, in order to select K features, a total of ðK�1ÞðN�K=2Þ terms
need to be evaluated which becomes intractable for large values of
N and K.

Algorithm 2. Generic incremental feature selection algorithm.

1: F’f1;…;Ng; \\ Set of unselected features
2: S’fg; \\Set of selected features
3: for k¼1 to K do
4: for n in F do
5: Jn’ Utility measure of feature Xn given S;
6: end for
7: nn’argminn Jn;
8: S’fS ; nng;
9: F’F \ nn;
10: end for

3.3. Proposed approach

A solution to the computational problem described above is
now proposed, and will be called Minimal Neighborhood Redun-
dancy Maximal Relevance (mNRMR). A preliminary version of this
algorithm can be found in [14]. The solution is proposed after
realizing that one of the most important causes of redundancy
between voxel intensities is their spatial distribution. As can be
seen in Fig. 1, voxels close to each other (direct neighbors) or
located symmetrically on the two brain hemispheres (symmetric
neighbors) tend to be more correlated than non-neighboring
voxels. In addition, the redundancy between non-neighbors has
a smaller variance than between neighbors. These insights suggest
that the sum of redundancy terms in Eq. (2) can be separated into
two parts (one for neighboring and the other for non-neighboring
voxels), and then the terms between non-neighbors can be
replaced by a constant Î nn estimated beforehand without losing
too many important voxel interactions. Taking these changes into
account, the utility measure becomes

JðXnÞ ¼ IðXn;YÞ�
jS \ Nn jÎ nnþ

P
mAS\Nn

IðXn;XmÞ
jSj ; ð3Þ

where Nn represents the set of voxels that belong to the neighbor-
hood of Xn or are symmetrically located in the opposite hemi-
sphere and Nn the set of all remaining non-neighboring voxels. In
addition, the notion of neighborhood was defined as

Nn ¼ mAS : ‖cm�cn‖1rr [ ‖cm�SymðcnÞ‖1rr
� �

; ð4Þ

where cn and cm are the coordinates of Xn and Xm, respectively,
Symð�Þ computes the location of the symmetric voxel and r is a
parameter that controls the size of the neighborhood. Three
illustrative examples are given in Fig. 2.

mNRMR, similar to mRMR, is an incremental feature selection
method and, thus, it can also be accurately described by Algorithm 2,
using Eq. (3) to estimate the utility of each unselected feature (in
line 5).

Fig. 1. Histogram of the mutual information between neighboring and non-
neighboring pairs of features. Results extracted from the Voxel Intensities of
FDG-PET images and with a neighborhood size of 12 mm.
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3.4. SVM based classification

Support Vector Machine (SVM) [34,35] is probably the most
widely used classifier for the automatic diagnosis of AD and related
disorders when neuroimages are used as the source of information,
mainly due to its robustness to high dimensional data. In its simplest
form, an SVM searches for the hyperplane in the input space that
separates with maximum margin instances from two classes. When
such separating hyperplane does not exist, then the SVM uses a soft
margin concept which allows errors to be committed while minimiz-
ing them. In addition, an SVM can be constructed to find a non-linear
separation surface on the input space, by mapping input patterns into
a typically higher dimensional space (known as the feature space),
and then searching there for the optimal separating hyperplane.
Kernels are normally used to conduct this operation because they
avoid the explicit computation of the mapping. Note that some
commonly used kernels, such as the Radial Basis Function (RBF),
implicitly map the input space into an output space of infinite
dimension. However, empirical evidence suggests that the linear
kernel is at least as good as other kernels previously tested in the
problem at hand, which is the reason why only the linear SVM was
used in this work.

The standard SVM formulation is known to be sensitive to
imbalanced datasets [36] because, when this imbalance is sig-
nificant, the SVM algorithm tends to find an hyperplane that is
biased towards the minority class, and thus achieving very low
accuracies for that class and almost perfect performances on the
majority class. A solution to this problem, and the one that we
explored in this work, is to increase the cost of misclassification for
the minority samples [37]. More specifically, this can be done
using two different parameters, Cþ and C� , to control the cost of
misclassifications in the two classes and setting the two such that
their ratio is proportional to the ratio of the numbers of minority
and majority instances (e.g. Cþ ¼ C and C� ¼ ðnþ =n� ÞC where nþ

and n� are the number of instances in the two classes). In this
work, we used the SVM implementation developed by Chang and
Lin [38], known as LIBSVM.

3.5. Assessment criteria

In order to obtain unbiased assessments of performance, a k� k0

nested cross-validation procedure [39] was used. This technique
allowed us to search for the best value of the SVM's parameter C,
which was done using a grid-search approach, and, at the same
time, evaluate the system in an unbiased fashion. In short, in each
one of the k iterations, a k0-fold cross-validation is used to estimate
the accuracy associated with each possible value of C and, then, an
SVM is trained using the optimal value. Additionally, in each
iteration, a small set of instances remains untouched during the
training process, which are then used for testing purposes.

In order to reduce statistical fluctuations, five nested cross-
validation procedures with randomly sampled partitions were
conducted for every experiment and only the average performance
is reported.

3.5.1. Classification performance
After each nested cross-validation, several standard measures

of performance were computed based on the predictions and
decision values f ðxÞ associated with all samples (and which were
recorded while they were being used for testing purposes),
namely: the accuracy, the sensitivity or true positive rate (TPR),
the specificity or true negative rate (TNR), the balanced accuracy
which is the average between the TPR and TNR, the ROC curve
(receiver operating characteristic) computed by changing the
threshold of the decision values and its AUC (area under the
curve). The diversity of evaluation measures will allow us to study
different aspects of the algorithms. However, only the most
relevant measures are reported in each experiment.

4. Data

4.1. ADNI database

Data used in the preparation of this paper were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of Biome-
dical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzhei-
mers disease (AD). Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada.
The initial goal of ADNI was to recruit 800 subjects but ADNI has
been followed by ADNI-GO and ADNI-2. To date these three
protocols have recruited over 1500 adults, ages 55–90, to participate
in the research, consisting of cognitively normal older individuals,
people with early or late MCI, and people with early AD. The follow
up duration of each group is specified in the protocols for ADNI-1,
ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and
ADNI-GO had the option to be followed in ADNI-2. For up-to-date
information, see www.adni-info.org.

In this study, we used 1.5 T Magnetic Resonance (MR) images
and Positron Emission Tomography (PET) images acquired from 59
patients suffering from Alzheimer's disease (AD), 135 with Mild
Cognitive Impairment (MCI) and 75 Normal Controls (NC). See
Table 1 for more information about each group. Both PET and MR
images had already undergone a series of preprocessing steps
carried by ADNI researchers.

4.1.1. ADNI PET preprocessing
Several scans are acquired during a single visit, which are then

co-registered to each other and averaged. The average image is
reoriented such that the anterior–posterior axis of the subject is

Fig. 2. Neighborhood of the three voxels represented by the three crosses. Despite
the 2D representation, the neighborhood is three-dimensional.
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parallel to the AC–PC line and resampled using a 1.5 mm grid. Finally,
the reoriented and resampled image is filtered with a scanner-
specific function to produce images with an apparent resolution
similar to the lowest resolution scanners used by ADNI [40].

4.1.2. ADNI MRI preprocessing
After acquisition, MR images are corrected for gradient non-

linearity distortions using a scanner-specific algorithm. Also, the
B1 non-uniformity procedure is applied, when necessary, to
correct non-uniformities in the image's intensity, and residual
non-uniformities are mitigated using an histogram peak sharpen-
ing algorithm called N3 [41,40].

4.1.3. Image preprocessing and registration
The images retrieved from the ADNI database are not aligned

with each other. Thus, in order to be able to make meaningful
voxelwise comparisons, all images were warped into the MNI
standard space, as follows.

First, the brain tissue in all MR images was extracted (skull-
stripping) and segmented into white-matter (WM) and gray-
matter (GM). The extraction of brain tissue was performed with
FreeSurfer which employs an hybrid procedure that combines
watershed algorithms and deformable surface models [42]. Tissue
classification, on the other hand, was conducted with SPM8 that
uses a unified segmentation approach [43] to produce gray and
white-matter probability maps. Second, each PET image was co-
registered with the corresponding skull-stripped MR image using
SPM8. Rigid-body transformations (6 degrees of freedom) and an
objective function based on the “sharpness” of the normalized
mutual information between the two images were used to conduct
these co-registrations [44]. Third, all MR images were non-linearly
registered into an inter-subject template using the DARTEL toolbox
from SPM8 [45]. DARTEL implements an iterative non-linear
registration algorithm that warps, in each step, the current
versions of the two tissue probability maps (of GM and WM) into
their corresponding average across individuals. These templates
were then mapped to the MNI-ICBM 152 nonlinear symmetric
atlas (version 2009a) [46] using an affine transformation. Finally,
after completing the above steps, the original PET images and the
tissue probability maps of GM were resampled into the MNI-152
standard space with a 3�3�3 mm resolution using the appro-
priate composition of transformations. Fig. 3 summarizes the
required registration steps. The tissue probability maps of GM
were also smoothed using a Gaussian kernel with a full-width at

half maximum of 8 mm and were spatially modulated, i.e. regions
that were expanded during the registration procedure were
correspondingly reduced in intensity and vice-versa. As for FDG-
PET images, the intensity was normalized using the Yakushev
normalization procedure [47]. Typically, FDG-PET images are
normalized by the average intracranial intensity. However,
because the intensity in certain regions is lower in AD and MCI
patients, their normalized images show false hyperactivity in the
regions that are not affected. To prevent this effect, Yakushev
procedure first finds a region that is not affected by searching for
false hyperactivity in normalized images of AD patients, and then
performs the normalization using the average intensity of that
cluster (instead of the whole image). An example of each type of
image used in this work is shown in Fig. 4.

4.2. Artificial database

In addition to the tissue probability maps of GM and the PET
images, we also tested the selection algorithms in an artificial
dataset composed by 150 artificial images evenly distributed into
two classes: C1 and C2. The advantage is that we can control and
know beforehand exactly which features are important to the
problem since the differences between classes are set manually.

To build this dataset, we first computed the average of all PET
images of healthy participants. Then, for each new image, a
random volume where each voxel followed an independent, zero
mean, normal distribution was sampled, spatially smoothed using
a Gaussian filter ðσ ¼ 6 mmÞ and added to the average PET image.
This noise component was normalized so that the ratio between
its energy and the energy of the average PET image could be set as
desired. For the second class C2, the intensity of 4 spherical
regions (with a 12 mm radius) was reduced, multiplying each
voxel in its interior by a constant smaller than 1. These reduction
factors were chosen randomly for each region in each new image
with uniform distribution between 0.9 and 1. The regions that
were artificially impaired are located mainly in the left and right
lateral temporal and the left and right dorsolateral parietal and,
overall, they covered only 1.5% of the entire intracranial region
(1028 voxels out of 69,887).

5. Experimental results

Several parameters had to be set in the current study. Some of
them were simply fixed to a reasonable value, while others were
searched within some range. We opted not to optimize the size of
the selected subsets inside the nested cross-validation procedure
(together with the SVM's parameter C) not only due to the larger
computational requirements but also to be able to analyze the
effect of this parameter on the performance of the system. With
this goal in mind, our experiments covered the whole range of
values for this parameter, from only 2 voxels up to the entire set of
69,887 voxels. Because this is a large range, an exponential
progression had to be used. For completeness, a summary of the
most important parameters that had to be set in this work, and

Table 1
Summary of clinical and demographic information for each group. Format: Mean
7 Standard Deviation.

Attribute CN MCI AD

# Subjects 75 135 59
Age 75.974.6 75.277.3 7676.6
Sex (% Fem.) 34.7 35.1 41.4
MMSE 29.171.0 27.271.6 23.572.0
CDR 0 0.5 0.870.2

Fig. 3. Summary of registration steps.
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their respective values/ranges can be seen in Table 2. It should be
mentioned that a few experiments were made with all para-
meters, and the values shown here are the ones that lead to
consistently good results with each approach. Also, notice that in
the case of mRMR, we only allowed the number of voxels to be
selected to go up to 1000 because of the excessive computational
requirements. Finally, the parameter associated with the average
redundancy between non-neighboring voxels ðÎ nnÞ was estimated
once for each problem from a random sample of 100,000 pairs of
non-neighbors.

5.1. Artificial dataset

The diagnosis of Alzheimer's disease can only be made with
absolute certainty post-mortem. Thus, the process of labeling each
image might be prone to errors, especially while patients are still
at the early stages of the disease. Moreover, the image acquisition,
reconstruction and preprocessing (including registration to a
common space) is also not error free, with a large number of
factors contributing to artificial differences in the values of the
features. Thus, it is of great relevance to assess the robustness of
the selection step to different levels of noise in both the class
labels and feature's values.

In this work, this was done using the artificial database
described in Section 4.2. However, before proceeding with the
robustness analysis, let us first analyze the typical performance of
the CAD system using the various selection procedures (shown in
Fig. 5). In addition to the 4 selection algorithms presented in
Section 3, a random selection technique and the “Ideal” subset,
which consists of all voxels in the affected regions (and no more),
were also evaluated for comparison purposes. Note that, for the
Ideal selection, the same features are always used, even though
the results are displayed as a function of the number of features in
order to ease the comparison. Note also that the mRMR algorithm

could not be tested for more than 1000 features because of the
prohibitive computational costs.

Several interesting observations can be drawn from this figure,
where in addition to the accuracy and AUC, we also provide the
selection accuracy, which simply measures the fraction of each
selected subset that is in fact relevant (i.e. that lie inside the
4 manually impaired regions). First of all, both mRMR and mNRMR
achieved performances close to Ideal using very small numbers of
features, while MIM and ReliefF need to select at least 1000 to
attain comparable results. In fact, these subsets generated by
mRMR and mNRMR contained only a fraction of the total number
of affected voxels, and thus they proved to generate subsets even
better than the Ideal. Second, the generalization ability of the SVM
classifier was heavily deteriorated for large numbers of features,
regardless of the selection procedure in use. This occurs because,
in this problem, the number of relevant voxels is very small (only
1028 out of the initial 69,887), which forces the inclusion of a large
number of completely non-relevant features after all the relevant
ones have been selected. Finally, note that both mNRMR and
mRMR start including voxels from non-relevant regions before
MIM or ReliefF. This is not surprising because, even though
relevant voxels are still available for selection, they are not chosen
since they are completely redundant and do not add any relevant
information to the subsets already selected.

5.1.1. Robustness to feature noise
We trained the CAD system to distinguish between the classes

C1 and C2 with 3 different levels of noise. More concretely, the
energy of the noise signal was set to 1%, 5% and 10% of the energy
of the uncorrupted base image. In addition, an SVM classifier was
trained using the Ideal selection process, achieving accuracies of
99.2%, 94.5% and 74.4% for the datasets with 1%, 5% and 10% of
noise, respectively. The three settings are compared in Table 3 for
two numbers of selected features: 25 and 1000.

Fig. 4. Examples of the neuroimages used in this work. An example of an already preprocessed FDG-PET image is shown on the left, a raw MR image in the middle, and the
spatially normalized tissue probability map of Gray-Matter extracted from the MR image on the right.

Table 2
Values or ranges used for the most important parameters.

Method Parameter Range/Value

MIM/mNRMR/ReliefF No. of selected features (K) 2, 5, 10, 25, 50, 100, 250, 500 1000, 2500, 5000, 10,000 25,000, 50,000, 69,887
mRMR No. of selected features (K) 2, 5, 10, 25, 50, 100, 250, 500 1000
ReliefF No. of Neighbors (n) 5
MIM/mRMR/mNRMR No. of Bins (MI estimation) (b) 8
mNRMR Neighborhood size (r) 4
SVM Cost of misclassification (C) 2�15;2�12 ;…;26

Cross-validation No. of folds ((k) and ðk0Þ) 10
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By comparing the Ideal accuracies with the ones shown in
Table 3, it is possible to assess the robustness of the various
selection methods to different levels of noise. First, when only 25
features are selected, the classification accuracy achieved by MIM
and ReliefF seems to be more affected by a small noise increase
(from 1% to 5%), even though every feature that was selected in
both situations comes from the affected regions. In contrast,
despite the larger numbers of selection mistakes committed by
mRMR and mNRMR, their classification performance was very
close to the Ideal 94.5% for the problem with 5% feature noise.
However, when the noise is increased to 10%, all four algorithms
seem to suffer significantly, yielding accuracies that are 8–10%
lower than the Ideal 74.4%. Even though this gap can be attenuated
by increasing the number of selected features (for instance, to
1000), it is never completely closed, probably because the selec-
tion accuracy is too low and by the time all discriminative
information has been selected, the number of non-relevant fea-
tures is too high for the SVM algorithm to deal with.

5.1.2. Robustness to label noise
In order to assess the robustness to noisy labels, a similar

experiment was conducted. An SVM classifier was trained with all
voxels contained in the affected regions, yielding accuracies of
94.5%, 83.5% and 72.9% in the artificial database where 0%, 10% and
20% of the images had been randomly mislabeled on purpose.
Feature values were also corrupted with a 5% additive noise. Then,
these results were compared with the ones obtained with each
one of the four selection techniques (consult Table 4). As can be
seen, the increase of the number of mislabeled images causes
mRMR and mNRMR to select features outside the relevant regions
earlier, but the larger amount of information contained in the
fewer relevant voxels that were selected compensates for this
limitation, which is the reason why similar or even superior
classification performances are achieved in almost every setting
in comparison to MIM or ReliefF. However, all four algorithms

seem to suffer with the inclusion of wrong labels. In fact, regard-
less of the number of selected voxels, the performance of all of
them never reaches the values obtained with a perfect selection of
features. Gaps of 3–5% for the dataset with 10% label noise, and of
5-8% for the dataset with 20% label noise are never closed.

5.1.3. Robustness to small sample size
One limitation is present in all works that deal with the

automatic diagnosis of AD and related disorders: the small sample
size of the datasets available. Even though large projects such as
ADNI have been increasing the average number of participants in
these studies, this number can still be considered small and, thus,
an effort should be made to use/develop methods that are more
robust to small sample sizes. This is in fact one of the reasons why
SVMs are so popular in this field, but the other components of the
CAD system should also take this limitation into account.

The robustness of all feature selection methods to small sample
sizes was studied in this work by reducing the number of training
samples in each iteration of the cross-validation (note however
that the initial 150 samples were still used for testing purposes in
the cross validation). Fig. 6 shows the results for two different
numbers of selected features: 25 and 1000. As can be seen, every
selection method suffers when the number of training samples is
too small (the gap to the Ideal performance is larger), but both
mRMR and mNRMR are able to achieve performances already
close to Ideal using only 25 features and 60 images per class. On
the other hand, even though MIM and ReliefF cannot achieve the
Ideal accuracies with 25 features, they can do it if 1000 features
are allowed to be selected. Recall that real datasets, such as the
ones presented in Section 4, already contain more than 60 patients
per class.

In conclusion, the results presented in the last three subsec-
tions suggest that the selection techniques studied in this work
might be working reasonably well for the number of subjects that
databases such as ADNI have currently available, but can be

Fig. 5. Classification performance and selection accuracy attained with each selection algorithm using the artificial database corrupted with 5% feature noise. The accuracy is
shown on the left, AUC on the middle and the selection accuracy on the right.

Table 3
Accuracy with noisy features. Performance assessment for the problems with 1%
(first element of each triple), 5% (second element) and 10% (third element) of
additive feature noise. Ideal accuracies: 99.2%/94.5%/74.4%.

Method 25 Features 1000 Features

Classification
accuracy (%)

Selection
accuracy (%)

Classification
accuracy (%)

Selection
accuracy (%)

MIM 97/83/64 100/100/65 99/95/69 100/84/18
ReliefF 95/83/64 100/100/51 99/92/67 100/74/13
mRMR 99/92/66 98/93/25 99/94/68 91/60/13
mNRMR 99/94/65 100/99/27 99/95/70 100/67/14

Table 4
Accuracy with noisy labels. Performance assessment for the problems with 0% (first
element of each triple), 10% (second element) and 20% (third element) of the
samples mislabeled. Ideal accuracies: 94.5%/83.5%/72.9%.

Method 25 Features 1000 Features

Classification
accuracy (%)

Selection
accuracy (%)

Classification
accuracy (%)

Selection
accuracy (%)

MIM 83/76/69 100/99/83 95/77/64 84/58/29
ReliefF 83/75/64 100/99/78 92/77/68 74/46/26
mRMR 92/79/61 93/50/22 94/79/65 60/33/15
mNRMR 94/79/66 99/65/29 95/78/63 67/39/19
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sensitive to both feature and label noise. The use/development of
selection techniques that display an increased robustness to these
issues might therefore be of great value. Nevertheless, the experi-
ments conducted in this work showed that our approach is at least
as good as the other selection algorithms tested. It should be
noted, however, that these results were obtained using a simple
artificial database and, thus, these conclusions should be taken
with caution.

5.2. Computational costs

The main advantage of mNRMR is the fact that it can efficiently
account for the redundancy between selected features. In order to
better assess the computational requirements of the studied
algorithms, the CPU time that each algorithm took to select the
desired number of features was registered and is shown in Fig. 7.
All experiments were conducted on an Intels Core™ i7-2600 K
processor running at 3.4 GHz. As can be seen, the computational
needs of MIM and ReliefF do not depend on the number of features
to select, but ReliefF is slower due to the fact that it needs to find
the nearest hits and misses (in the high dimensional feature space)
of every sample. As for mRMR and mNRMR, their computational
requirements increase with the number of features. For each new
selected feature, mRMR spends most of its time estimating its
mutual information with all unselected ones. mNRMR, on the
other hand, only needs to compute the redundancy with neigh-
boring voxels that had not been previously selected, reducing
therefore the timing requirements by a large factor. In this
experiment, where the initial number of the features was close
to 70.000 and the average neighborhood contained approximately
1000 voxels, mNRMR was able to speed-up the selection process
by a factor of 40.

5.3. Diagnostic performance on the ADNI database

5.3.1. FDG-PET
As mentioned earlier, FDG-PET images are being increasingly

used for diagnostic purposes. This technique estimates at each
location the cerebral metabolic rate for glucose (CMRglc), producing
an image that describes the pattern of brain activity of each patient.
Thus, it is possible to search for characteristic patterns of brain
activity that are known to be linked with AD, such as the reduction
of CMRglc at the posterior cingulate and temporoparietal association
cortices, but largely sparing the basal ganglia, thalamus, cerebellum

and cortex mediating primary sensory and motor functions [49,50].
Supervised learning techniques can therefore be used to expose the
most affected areas and to diagnose new (unseen) images.

The CAD system proposed in this work was trained with FDG-
PET images in two different tasks: for the diagnosis of AD (AD vs.
CN) and for the diagnosis of MCI (MCI vs. CN). In short, after
preprocessing all images so that they lie in the same stereotaxic
space and with comparable intensities, the most useful features
were selected and used to train a linear SVM. Since classes in the
ADNI database are unbalanced, class-specific misclassification
costs computed as explained in Section 3.4 were used to reduce
the bias of the SVM algorithm towards the majority class.
Figs. 8 and 9 compare the classification performance achieved by
the 5 selection techniques for the diagnosis of AD and MCI,
respectively, and as a function of the number of features. Three
measures of classification performance are shown, namely the
balanced accuracy (average between sensitivity and specificity),
AUC and ROC curve (for N¼25).

As can be seen, both mRMR and mNRMR can select subsets of
features with significantly higher discriminative power when a
small number is to be chosen. This is explained by the fact that, if
the redundancy between features is disregarded during the selec-
tion process (as done by MIM and ReliefF), the first voxels will lie
close to each other, concentrated on the regions mostly affected by
the disease. Since neighboring voxels typically share a large
amount of information, both because of the smooth nature of
the underlying pattern of glucose consumption and the fact that
these images were spatially smoothed during the preprocessing

Fig. 6. Performance assessment of each selection scheme using a varying number of training samples. Top row – classification accuracy; Bottom row – selection accuracy;

Fig. 7. Total amount of CPU time (in minutes) spent by each algorithm to select a
varying number of features.
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stage, then, the inclusion of neighboring features in a subset of
limited size limits the amount of information that is fed to the
classifier. In contrast, the features chosen by mRMR and mNRMR
are more sparsely distributed throughout the whole image, select-
ing voxels not only from the most discriminative regions, but also
from regions that are not as affected by the disease but are
nevertheless important. This greater diversity of information helps
the SVM algorithm to achieve better diagnostic performances with
a very small number of features, as can be confirmed in the ROC
curves plotted for N¼25. When a large number of features is to be
selected, every algorithm (including random selection) had
already the opportunity to sample from all discriminative regions
and that is the reason why the classification performance of the
5 CAD systems eventually converged to a maximum value,
remaining roughly stable both for the diagnosis of AD and MCI.

A Wilcoxon signed-rank test was used to compare, for each
number of features, the accuracies obtained by the proposed
algorithm with the remaining ones. In spite of a few exceptions,
statistically significant differences (at a 5% significance level) were
found between our approach and both MIM and ReliefF in the AD
vs. CN problemwhen using less than 1000 features, and in the MCI
vs. CN problem when using less than 50 features. Also, no
statistical significant differences were found between our
approach and mRMR (with the exception for the task AD vs. CN
using feature sets of dimension 2 and 5).

In order to better understand which regions played a major role
in the diagnosis and to understand the selection strategy of the
various algorithms, Fig. 10 shows the spatial distribution of the
selected features broken down into the different brain regions which
were labeled according to the Harvard-Oxford cortical and subcor-
tical atlases [48]. For each column of these color tables, the
intensities encode the contributions of different brain regions to

the set of selected voxels. Notice that, for the task AD vs. CN, the
regions that are being selected earlier are in fact known to be more
affected by the disease according to the literature (see above).
However, important regions such as the Hippocampus, Parahippo-
campal Gyrus, Angular Gyrus and Temporal Gyrus are sampled much
earlier when using mNRMR or mRMR. As for the task MCI vs. CN, the
smaller differences between the two classes cause greater difficulties
to all algorithms. Thus, since only barely discriminative regions exist,
MIM tends to sample the brain volumemore sparsely (in comparison
with the task AD vs. CN) but, nevertheless, the selection of even
more spatially distributed subsets of voxels with less redundant
information (as done by mNRMR and mRMR) is advantageous for
classification purposes.

In conclusion, because we are interested in reducing the
dimensionality of the problem as much as possible while main-
taining the initial discriminative power, mRMR and mNRMR can
be considered to be superior to MIM and ReliefF. In fact, both
mRMR and mNRMR achieve the maximum classification perfor-
mance (in both problems) using very small subsets while MIM and
ReliefF need more than 1000 features to attain similar results. Our
approach can however achieve the same goal about 40 times faster
than mRMR. Furthermore, from a classification perspective, almost
no differences were observed between mRMR and mNRMR,
validating the latter as an efficient approximation of the former.

5.3.2. Tissue maps of Gray-Matter
Several studies have shown that Alzheimer's disease and mild

cognitive impairment cause brain atrophy, affecting severely gray-
matter tissues. Thus, GMmaps, which when registered to the same
stereotaxic space enable us to make voxelwise comparisons of the
amount of gray-matter existent throughout the cortex, are a very

Fig. 8. Classification results for the different selection algorithms using the voxel intensities of FDG-PET images as features to distinguish between AD patients and healthy
individuals. The balanced accuracy is shown on the left, AUC on the middle and the ROC curve (for N¼25) on the right.

Fig. 9. Classification results for the different selection algorithms using the voxel intensities of FDG-PET images as features to distinguish between MCI patients and healthy
individuals. The balanced accuracy is shown on the left, AUC on the middle and the ROC curve (for N¼25) on the right.
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useful and widely used source of information for CAD systems.
Characteristic patterns of brain atrophy (i.e. loss of brain tissue)
have also been identified in previous studies. More specifically, the
hippocampus and entorhinal cortex are the earliest to be affected
and, as the disease progresses, the atrophy starts spreading to the
temporoparietal association cortices, medial temporal lobe, pos-
terior cingulate gyrus and precuneus. Only at the later stages, the
primary visual, sensorimotor, and frontal cortex are affected [51].
Thus, this type of neuroimage can also provide important dis-
criminative information about Alzheimer's disease [52].

In this work, we also compared our approach with the other
feature selection techniques using GM maps. The performance

obtained for the two diagnostic problems (AD vs. CN and MCI vs.
CN) as a function of the number of selected features can be seen in
Figs. 11 and 12.

The problem of distinguishing AD patients from healthy con-
trols was the only one where even the two methods that reduced
the redundancy between the selected voxels could not find a small
subset of features containing all discriminative information. As can
be seen in Fig. 11, the inclusion of features (up to 10000) seems to
always help the SVM classifier to achieve better results (higher
accuracy and AUC), regardless of the selection technique in use.
Nevertheless, mRMR and mNRMR still performed better than MIM
and ReliefF for small numbers of features, even though their

Fig. 10. Spatial distribution of the subsets of voxels selected by MIM, mRMR and mNRMR for the diagnosis of AD and MCI using FDG-PET images. The color encodes the
average number of voxels selected in each region normalized by the region's size. The delineation of the boundaries of the above regions was obtained by linearly aligning
the Harvard-Oxford atlas [48] with the space where our images lie.

Fig. 11. Classification results for the different selection algorithms using the voxel intensities of the GM maps as features to distinguish between AD patients and healthy
individuals. The balanced accuracy is shown on the left, AUC on the middle and the ROC curve (for N¼25) on the right.
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performance only peaked at K¼10,000. In fact, these differences
were statistical significant up to 50 features, as measured by the
Wilcoxon test. As for the diagnosis of MCI, mNRMR attained once
again its best diagnostic performance using only 10/25 features,
while MIM and ReliefF could only achieve similar performances
after selecting 1000 and 5000 features, respectively. This superior
generalization of mRMR and mNRMR for very small number of
features is evident in the ROC curves shown in Figs. 11 and 12,
where N is set to 25. Once again, no statistical significant
differences were found between our approach and mRMR when
using GM maps, except for the problem MCI vs. CN using 50 and
100 features.

In order to visualize what regions were considered to be the
most important for the diagnosis, Fig. 13 depicts the distribution of
the voxels selected by MIM, mRMR and mNRMR. In this case, the
selection was concentrated as expected on regions close to the
Hippocampus such as the Inferior Temporal Gyrus, Temporal
Fusiform Cortex and Parahippocampal Gyrus. However, similar to
what happened with FDG-PET images, both mRMR and mNRMR
were able to collect information from a wider variety of sources
when a small number of features had to be selected. As mentioned
earlier, it is this greater amount of information that is fed to the
classifier that explains the superior performances attained by
these two methods.

Fig. 12. Classification results for the different selection algorithms using the voxel intensities of FDG-PET images as features to distinguish between MCI patients and healthy
individuals. The balanced accuracy is shown on the left, AUC on the middle and the ROC curve (for N¼25) on the right.

Fig. 13. Spatial distribution of the subsets of voxels selected by MIM, mRMR and mNRMR for the diagnosis of AD and MCI using spatially normalized maps of Gray-Matter.
The color encodes the average number of voxels selected in each region normalized by the region's size.
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In sum, both mRMR and mNRMR proved once again that they
can choose subsets of features with higher discriminative power
than MIM or ReliefF, when a small number of features is to be
chosen, but our method (mNRMR) runs significantly faster. Thus,
mNRMR should be preferred when the goal is to build a small but
reliable CAD system. Finally, a summary of the best results
achieved by the 5 algorithms in the two problems using either
GM maps or FDG-PET images can be consulted in Table 5.

6. Conclusion

In this paper, we proposed a multivariate feature selection algo-
rithm which we called minimal neighborhood redundancy maximal
relevance or mNRMR, and compared it with several widely used
feature selection techniques for the diagnosis of AD and MCI using the
voxel intensities of FDG-PET images and GMmaps directly as features.
Our approach has the advantage of being able to reduce the amount of
redundant information among the selected features, which is of great
importance in the problem at hand due to the high redundancy
between neighboring voxels. In fact, by using mNRMRwewere able to
obtain performances as good as the ones achieved with simpler
methods (and even slightly superior for the diagnosis of MCI), but
using much smaller sets of features. For example, in the diagnosis of
AD, our approach attained its best performance using only 250
features of the FDG-PET volume, while MIM needed 5000 to achieve
similar results. Similarly, in the diagnosis of MCI, we were able to
attain comparable results using GM maps with only 25 features,
instead of 1000 used by MIM, and using FDG-PET images with 10
features instead of 250. Even though the same advantages can be
encountered in algorithms such as mRMR, they are computationally
too demanding, preventing them from being used in high dimensional
spaces. The much lower computational requirements of mNRMR is
therefore essential to the application of this type of selection algo-
rithms to neuroimages.

We also studied the robustness of all the selection algorithms
to difficulties that commonly arise in the databases used for the
diagnosis of AD and related disorders, such as the presence of
noise both in the feature values and in the class labels, or the
reduced number of participants that are available in these studies.
Our approach proved to be at least as robust as the other selection
algorithms when confronted with these problems. However, the
performance of all algorithms suffered when the amount of
feature and label noise was increased. Even though these results
were obtained in an artificial dataset, we believe that the devel-
opment of robust approaches to these issues can be a promising
line of research for future work.
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